Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
BMC Genom Data ; 25(1): 35, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532320

RESUMO

Pungency of garlic (Allium sativum L.) is generated from breakdown of the alk(en)yl cysteine sulphoxide (CSO), alliin and its subsequent breakdown to allicin under the activity of alliinase (All). Based on recent evidence, two other important genes including Sulfite reductase (SiR) and Superoxide dismutase (SOD) are thought to be related to sulfur metabolism. These three gene functions are in sulfate assimilation pathway. However, whether it is involved in stress response in crops is largely unknown. In this research, the order and priority of simultaneous expression of three genes including All, SiR and SOD were measured on some garlic ecotypes of Iran, collected from Zanjan, Hamedan and Gilan, provinces under sulfur concentrations (0, 6, 12, 24 and 60 g/ per experimental unit: pot) using real-time quantitative PCR (RT-qPCR) analysis. For understanding the network interactions between studied genes and other related genes, in silico gene network analysis was constructed to investigate various mechanisms underlying stimulation of A. sativum L. to cope with imposed sulfur. Complicated network including TF-TF, miRNA-TF, and miRNA-TF-gene, was split into sub-networks to have a deeper insight. Analysis of q-RT-PCR data revealed the highest expression in All and SiR genes respectively. To distinguish and select significant pathways in sulfur metabolism, RESNET Plant database of Pathway Studio software v.10 (Elsevier), and other relative data such as chemical reactions, TFs, miRNAs, enzymes, and small molecules were extracted. Complex sub-network exhibited plenty of routes between stress response and sulfate assimilation pathway. Even though Alliinase did not display any connectivity with other stress response genes, it showed binding relation with lectin functional class, as a result of which connected to leucine zipper, exocellulase, peroxidase and ARF functional class indirectly. Integration network of these genes revealed their involvement in various biological processes such as, RNA splicing, stress response, gene silencing by miRNAs, and epigenetic. The findings of this research can be used to extend further research on the garlic metabolic engineering, garlic stress related genes, and also reducing or enhancing the activity of the responsible genes for garlic pungency for health benefits and industry demands.


Assuntos
Alho , MicroRNAs , Alho/química , Alho/genética , Alho/metabolismo , Redes Reguladoras de Genes , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Sulfatos/metabolismo
2.
Int J Mol Sci ; 24(23)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38069099

RESUMO

Garlic, originating in the mountains of Central Asia, has undergone domestication and subsequent widespread introduction to diverse regions. Human selection for adaptation to various climates has resulted in the development of numerous garlic varieties, each characterized by specific morphological and physiological traits. However, this process has led to a loss of fertility and seed production in garlic crops. In this study, we conducted morpho-physiological and transcriptome analyses, along with whole-genome resequencing of 41 garlic accessions from different regions, in order to assess the variations in reproductive traits among garlic populations. Our findings indicate that the evolution of garlic crops was associated with mutations in genes related to vernalization and the circadian clock. The decline in sexual reproduction is not solely attributed to a few mutations in specific genes, but is correlated with extensive alterations in the genetic regulation of the annual cycle, stress adaptations, and environmental requirements. The regulation of flowering ability, stress response, and metabolism occurs at both the genetic and transcriptional levels. We conclude that the migration and evolution of garlic crops involve substantial and diverse changes across the entire genome landscape. The construction of a garlic pan-genome, encompassing genetic diversity from various garlic populations, will provide further insights for research into and the improvement of garlic crops.


Assuntos
Alho , Humanos , Alho/genética , Alho/metabolismo , Domesticação , Fenótipo , Perfilação da Expressão Gênica , Produtos Agrícolas/genética , Reprodução/genética
3.
Int J Mol Sci ; 24(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37511578

RESUMO

Garlic (Allium sativum L.) is a popular condiment used as both medicine and food. Garlic production in China is severely affected by continuous cropping and is especially affected by leaf blight disease. Garlic is sterile, so it is very important to develop specialized genotypes, such as those for disease resistance, nutritional quality, and plant architecture, through genetic modification and innovation. In this experiment, we applied the induction method using EMS to mutate garlic cloves of cultivar G024. From the mutations, 5000 M0 mutants were generated and planted in the field. Then, 199 M1 mutant lines were screened according to growth potential and resistance to leaf blight. From M2 to M3, 169 generational lines were selected that grew well and were resistant to leaf blight in the field. Thereafter, their resistance to leaf blight was further analyzed in the lab; 21 lines resistant to leaf blight that had good growth potential were identified, among which 3 mutants were significantly different, and these were further screened. Also, transcriptome analysis of two mutants infected with Pleospora herbarum, A150 and G024, was performed, and the results revealed 2026 and 4678 differentially expressed genes (DEGs), respectively. These DEGs were highly enriched in hormone signaling pathway, plant-pathogen interaction, and MAPK signaling pathway. Therefore, the results provide a theoretical and technical basis for the creation of garlic germplasm resistant to leaf blight.


Assuntos
Ascomicetos , Alho , Alho/genética , Metanossulfonato de Etila/metabolismo , Plantas , Metano/metabolismo
4.
Cell Mol Biol (Noisy-le-grand) ; 69(3): 33-51, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37300690

RESUMO

Garlic, a popular vegetable cum condiment is known widely for its health benefits, pharmacological properties and in curing several pathological conditions. This compelling horticultural bulb crop is propagated asexually from individual bulbils or cloves. It is an obligate apomict that lost its fertility and blooming potential long ago and probable reason for evolution from fertility to sterility to greater contiguity of human selection to asexual propagules as they are used in culinary as and when required. The crop is likely to be sterile owing to nutritional competition between topsets, pollen degeneration, chromosomal deletion, irregular chromosomal pairing and abnormal meiosis during gametogenesis and thus curbing genetic variation is needed utmost for its improvement. With asexual reproduction, molecular studies are challenging due to its expected and complex genome. Alongside classical molecular markers like RAPDs, AFLPs, SRAPs, SSRs, and isozymes; recent high-throughput genotyping-by-sequencing (GBS) approaches like DArTseq has allowed characterization, mapping, whole-genome profiling, DNA fingerprinting among others in garlic. However, in recent years, biotechnological tools, genetic transformation via biolistic or Agrobacterium tumefaciens, polyploidization or chromosomal doubling have emerged as a potent breeding tool in enabling the improvement of vegetatively propagated plants such as garlic. In recent times biological responses of garlic and its compounds have been studied using epigenomics, proteomics and transcriptomics by researchers in preclinical studies instigating the biological effects of garlic and such gene expression revealed many early mechanistic events which may clinically underlie important health benefits pertaining to garlic intake. This review thus encompasses efforts achieved till present date towards elucidation of garlic genome with regard to molecular, biotechnological analysis and gene expression in terms of in vitro and in vivo studies.


Assuntos
Alho , Humanos , Alho/genética , Alho/metabolismo , Perfilação da Expressão Gênica , Técnica de Amplificação ao Acaso de DNA Polimórfico
5.
Artigo em Inglês | MEDLINE | ID: mdl-37191986

RESUMO

Three bacterial strains, H21R-40T and H21R-36 from garlic (Allium sativum) and H25R-14T from onion (Allium cepa), were isolated from plant rhizospheres sampled in the Republic of Korea. Results of 16S rRNA gene sequence analysis revealed the highest sequence similarity of strain H21R-40T to Leucobacter celer subsp. astrifaciens CBX151T (97.3 %) and Leucobacter triazinivorans JW-1T (97.2 %), and strain H25R-14T to Leucobacter insecticola HDW9BT (98.8 %) and Leucobacter humi Re6T (98.4 %), while the sequence similarity between strains H21R-40T and H21R-36 was 99.8 %. According to the phylogenomic tree, strains H21R-40T with H21R-36 formed an independent clade separable from other Leucobacter species within the genus Leucobacter and strain H25R-14T clustered with Leucobacter insecticola HDW9BT, Leucobacter coleopterorum HDW9AT and Leucobacter viscericola HDW9CT. Strains H21R-40T and H21R-36 had orthologous average nucleotide identity (OrthoANI) and digital DNA-DNA hybridization (dDDH) values (98.1 % and 86.9 %, respectively) higher than the threshold ranges for species delineation (95-96 % and 70 %, respectively). The OrthoANI and dDDH values between two strains (H21R-40T and H25R-14T) and the type strains of species of the genus Leucobacter were lower than 81 and 24 %, respectively. The peptidoglycan type of three strains was type B1. The major menaquinones and major polar lipids of the strains were MK-11 and MK-10, and diphosphatidylglycerol, phatidylglycerol and an unidentified glycolipid, respectively. The major fatty acids (more than 10 % of the total fatty acids) of strains H21R-40T and H21R-36 were anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0, and those of strain H25R-14T were anteiso-C15 : 0 and iso-C16 : 0. The phenotypic, chemotaxonomic and genotypic data obtained in this study showed that the strains represent two novel species of the genus Leucobacter, named Leucobacter allii sp. nov. (H21R-40T and H21R-36) and Leucobacter rhizosphaerae sp. nov. (H25R-14T). The respective type strains are H21R-40T (=DSM 114348T=JCM 35241T=KACC 21839T=NBRC 115481T) and H25R-14T (=DSM 114346T=JCM 35239T=KACC 21837T=NBRC 115479T).


Assuntos
Actinomycetales , Alho , Ácidos Graxos/química , Cebolas , Alho/genética , Fosfolipídeos , RNA Ribossômico 16S/genética , Rizosfera , Análise de Sequência de DNA , Filogenia , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Vitamina K 2 , Antioxidantes
6.
Arch Virol ; 168(6): 167, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37227509

RESUMO

The complete genome of a new virus belonging to the family Betaflexiviridae was identified in garlic and sequenced by next-generation sequencing and reverse transcription PCR. The complete RNA genome (GenBank accession number OP021693) is 8191 nucleotides in length, excluding the 3' poly(A) tail, and contains five open reading frames (ORFs). These open reading frames encode the viral replicase, triple gene block, and coat protein, and the genome organization is typical of members of the subfamily Quinvirinae. The virus has been tentatively named "garlic yellow curl virus" (GYCV). Phylogenetic analysis suggested that it represents an independent evolutionary lineage in the subfamily, clustering with the currently unclassified garlic yellow mosaic associated virus (GYMaV) and peony betaflexivirus 1 (PeV1). Differences between the phylogenies inferred for the replicase and coat protein indicate that the new virus does not belong to any established genus of the family Betaflexiviridae. This is the first report of GYCV in China.


Assuntos
Flexiviridae , Alho , Alho/genética , Filogenia , Genoma Viral , Flexiviridae/genética , RNA , RNA Mensageiro , Fases de Leitura Aberta , RNA Viral/genética , Doenças das Plantas
7.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108694

RESUMO

Proteins of the SWEET (Sugar Will Eventually be Exported Transporters) family play an important role in plant development, adaptation, and stress response by functioning as transmembrane uniporters of soluble sugars. However, the information on the SWEET family in the plants of the Allium genus, which includes many crop species, is lacking. In this study, we performed a genome-wide analysis of garlic (Allium sativum L.) and identified 27 genes putatively encoding clade I-IV SWEET proteins. The promoters of the A. sativum (As) SWEET genes contained hormone- and stress-sensitive elements associated with plant response to phytopathogens. AsSWEET genes had distinct expression patterns in garlic organs. The expression levels and dynamics of clade III AsSWEET3, AsSWEET9, and AsSWEET11 genes significantly differed between Fusarium-resistant and -susceptible garlic cultivars subjected to F. proliferatum infection, suggesting the role of these genes in the garlic defense against the pathogen. Our results provide insights into the role of SWEET sugar uniporters in A. sativum and may be useful for breeding Fusarium-resistant Allium cultivars.


Assuntos
Fusariose , Fusarium , Alho , Alho/genética , Fusariose/genética , Melhoramento Vegetal , Genoma de Planta , Fusarium/genética , Açúcares
8.
Eur J Nutr ; 62(5): 2279-2292, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093261

RESUMO

PURPOSE: Garlic consumption has been inversely associated to intestinal adenoma (IA) and colorectal cancer (CRC) risk, although evidence is not consistent. Gut microbiota has been implied in CRC pathogenesis and is also influenced by garlic consumption. We analyzed whether dietary garlic influence CRC risk and bacterial DNA in blood. METHODS: We conducted a case-control study in Italy involving 100 incident CRC cases, 100 IA and 100 healthy controls matched by center, sex and age. We used a validated food frequency questionnaire to assess dietary habits and garlic consumption. Blood bacterial DNA profile was estimated using qPCR and16S rRNA gene profiling. We derived odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) of IA and CRC according to garlic consumption from multiple conditional logistic regression. We used Mann-Whitney and chi-square tests to evaluate taxa differences in abundance and prevalence. RESULTS: The OR of CRC for medium/high versus low/null garlic consumption was 0.27 (95% CI = 0.11-0.66). Differences in garlic consumption were found for selected blood bacterial taxa. Medium/high garlic consumption was associated to an increase of Corynebacteriales order, Nocardiaceae family and Rhodococcus genus, and to a decrease of Family XI and Finegoldia genus. CONCLUSIONS: The study adds data on the protective effect of dietary garlic on CRC risk. Moreover, it supports evidence of a translocation of bacterial material to bloodstream and corroborates the hypothesis of a diet-microbiota axis as a mechanism behind the role of garlic in CRC prevention.


Assuntos
Neoplasias Colorretais , Alho , Humanos , Alho/genética , DNA Bacteriano/genética , Estudos de Casos e Controles , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/prevenção & controle , Neoplasias Colorretais/etiologia , Dieta , Modelos Logísticos , Antioxidantes , Bactérias/genética , Fatores de Risco
9.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982386

RESUMO

LncRNA (long non-coding RNA) and mRNA form a competitive endogenous RNA (ceRNA) network by competitively binding to common miRNAs. This network regulates various processes of plant growth and development at the post-transcriptional level. Somatic embryogenesis is an effective means of plant virus-free rapid propagation, germplasm conservation, and genetic improvement, which is also a typical process to study the ceRNA regulatory network during cell development. Garlic is a typical asexual reproductive vegetable. Somatic cell culture is an effective means of virus-free rapid propagation in garlic. However, the ceRNA regulatory network of somatic embryogenesis remains unclear in garlic. In order to clarify the regulatory role of the ceRNA network in garlic somatic embryogenesis, we constructed lncRNA and miRNA libraries of four important stages (explant stage: EX; callus stage: AC; embryogenic callus stage: EC; globular embryo stage: GE) in the somatic embryogenesis of garlic. It was found that 44 lncRNAs could be used as precursors of 34 miRNAs, 1511 lncRNAs were predicted to be potential targets of 144 miRNAs, and 45 lncRNAs could be used as eTMs of 29 miRNAs. By constructing a ceRNA network with miRNA as the core, 144 miRNAs may bind to 1511 lncRNAs and 12,208 mRNAs. In the DE lncRNA-DE miRNA-DE mRNA network of adjacent stages of somatic embryo development (EX-VS-CA, CA-VS-EC, EC-VS-GE), by KEGG enrichment of adjacent stage DE mRNA, plant hormone signal transduction, butyric acid metabolism, and C5-branched dibasic acid metabolism were significantly enriched during somatic embryogenesis. Since plant hormones play an important role in somatic embryogenesis, further analysis of plant hormone signal transduction pathways revealed that the auxin pathway-related ceRNA network (lncRNAs-miR393s-TIR) may play a role in the whole stage of somatic embryogenesis. Further verification by RT-qPCR revealed that the lncRNA125175-miR393h-TIR2 network plays a major role in the network and may affect the occurrence of somatic embryos by regulating the auxin signaling pathway and changing the sensitivity of cells to auxin. Our results lay the foundation for studying the role of the ceRNA network in the somatic embryogenesis of garlic.


Assuntos
Alho , MicroRNAs , RNA Longo não Codificante , Alho/genética , RNA Longo não Codificante/genética , Reguladores de Crescimento de Plantas , Redes Reguladoras de Genes , MicroRNAs/genética , RNA Mensageiro/genética , Ácidos Indolacéticos
10.
Lett Appl Microbiol ; 76(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36794889

RESUMO

Leek yellow stripe virus (LYSV) is one of the most important potyviruses, associated with garlic throughout the world, including India. LYSV causes stunting and yellow streaks in garlic and leek leaves and with other coinfecting viruses leading to severe symptom expression and yield reduction. In this study, we have made the first reported attempt to produce specific polyclonal antibodies to LYSV using expressed recombinant coat protein (CP), which would be useful for screening and routine indexing of the garlic germplasm. The CP gene was cloned, sequenced, and further subcloned in pET-28a(+) expression vector, which yielded ∼35 kDa fusion protein. The fusion protein was obtained in insoluble fraction after purification and its identity was confirmed by SDS-PAGE and western blotting. The purified protein was used as immunogen for production of polyclonal antisera in New Zealand white rabbit. Antisera raised, was able to recognize the corresponding recombinant proteins in western blotting, immunosorbent electron microscopy and dot immunobinding assay (DIBA). Developed antisera to LYSV (titer 1:2000) was used for screening of 21 garlic accessions in antigen coated plate enzyme-linked immunosorbent assay (ACP-ELISA) and 16 accessions were found positive for LYSV, indicating its widespread presence within the collection tested. To the best of our knowledge, this is the first report of a polyclonal antiserum against the in-vitro expressed CP of LYSV and its successful application in diagnosis of LYSV in garlic accessions in India.


Assuntos
Alho , Potyvirus , Animais , Coelhos , Cebolas , Escherichia coli/genética , Sequência de Bases , Proteínas Recombinantes/genética , Alho/genética , Potyvirus/genética , Soros Imunes/genética
11.
BMC Genomics ; 24(1): 87, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829121

RESUMO

BACKGROUND: Facility cultivation is widely applied to meet the increasing demand for high yield and quality, with light intensity and light quality being major limiting factors. However, how changes in the light environment affect development and quality are unclear in garlic. When garlic seedlings are grown, they can also be exposed to blanching culture conditions of darkness or low-light intensity to ameliorate their appearance and modify their bioactive compounds and flavor. RESULTS: In this study, we determined the quality and transcriptomes of 14-day-old garlic and blanched garlic seedlings (green seedlings and blanched seedlings) to explore the mechanisms by which seedlings integrate light signals. The findings revealed that blanched garlic seedlings were taller and heavier in fresh weight compared to green garlic seedlings. In addition, the contents of allicin, cellulose, and soluble sugars were higher in the green seedlings. We also identified 3,872 differentially expressed genes between green and blanched garlic seedlings. The Kyoto Encyclopedia of Genes and Genomes analysis suggested enrichment for plant-pathogen interactions, phytohormone signaling, mitogen-activated protein kinase signaling, and other metabolic processes. In functional annotations, pathways related to the growth and formation of the main compounds included phytohormone signaling, cell wall metabolism, allicin biosynthesis, secondary metabolism and MAPK signaling. Accordingly, we identified multiple types of transcription factor genes involved in plant-pathogen interactions, plant phytohormone signaling, and biosynthesis of secondary metabolites among the differentially expressed genes between green and blanched garlic seedlings. CONCLUSIONS: Blanching culture is one facility cultivation mode that promotes chlorophyll degradation, thus changing the outward appearance of crops, and improves their flavor. The large number of DEGs identified confirmed the difference of the regulatory machinery under two culture system. This study increases our understanding of the regulatory network integrating light and darkness signals in garlic seedlings and provides a useful resource for the genetic manipulation and cultivation of blanched garlic seedlings.


Assuntos
Alho , Alho/genética , Reguladores de Crescimento de Plantas/metabolismo , Dissulfetos/metabolismo , Ácidos Sulfínicos , Transcriptoma , Plântula/genética , Regulação da Expressão Gênica de Plantas
12.
Gene ; 860: 147215, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36709878

RESUMO

In response to biotic and abiotic stressors, aldehydes are detoxified and converted to carboxylic acids by aldehyde dehydrogenases (ALDHs), which are enzymes that use NAD+/NADP+ as cofactors. Garlic (Allium sativum L.) has not yet undergone a systematic examination of the ALDH superfamily, despite the genome sequence having been made public. In this investigation, we identified, characterized, and profiled the expression of the garlic ALDH gene family over the entire genome. The ALDH Gene Nomenclature Committee (AGNC) classification was used to classify and name the 34 ALDH genes that were discovered. Except for chromosome 8, all AsALDH genes were dispersed across the chromosomes. AsALDH genes have various localizations, according to predictions about subcellular localization. The AsALDH proteins are more varied and closely related to rice than to Arabidopsis, according to a study of conserved motifs and phylogenetic relationships. The presence of stress modulation pathways is indicated by the abundance of stress-related cis-elements in the AsALDH genes' promoter regions. Analysis of the RNA-seq data showed that AsALDHs expressed differently in various tissues and at various developmental stages. Nine AsALDHs were chosen for study using RT-qPCR, and the results revealed that the majority of the genes were upregulated in response to ABA and downregulated in response to salinity and drought. The results of this study improved our knowledge of the traits, evolutionary background, and biological functions of AsALDHs genes in growth and development.


Assuntos
Arabidopsis , Alho , Alho/genética , Filogenia , Família Multigênica , Aldeído Desidrogenase/genética , Aldeído Desidrogenase/metabolismo , Secas , Salinidade , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
13.
Braz. j. biol ; 83: 1-10, 2023. tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468807

RESUMO

Allium sativum L. is an herb of the Alliaceae family with a specific taste and aroma and medicinal and nutraceutical properties that are widely marketed in several countries. Brazil is one of the largest importers of garlic in the world, despite of its production is restricted and limited to internal consumption. Thus, explore the genetic diversity of commercial garlic conserved at germplasm banks is essential to generate additional genetic information about its economically important crop. A suitable tool for this purpose is the cytogenetic characterisation of these accessions. This study aimed to characterise the cytogenetic diversity among seven accessions of garlic from a Germplasm Bank in Brazil. The karyotypes were obtained by conventional staining and with chromomycin A3 (CMA) and 4,6-diamidino-2-phenylindole (DAPI) fluorochromes. All accessions analysed showed chromosome number 2n= 16, karyotype formula 6M+2SM, symmetrical karyotypes, reticulate interphase nuclei, and chromosomes with uniform chromatin condensation from prophase to metaphase. The fluorochromes staining showed differences in the amount and distribution of heterochromatin along the chromosomes and between accessions studied. Based on the distribution pattern of these small polymorphisms, it was possible to separate the seven accessions into three groups. It was also possible to differentiate some of the accessions individually. One of the results obtained showed a heteromorphic distension of the nucleolar organiser region observed on the chromosome pairs 6 or 7 with peculiar characteristics. It was suggested for example, that the heteromorphic block of heterochromatin (CMA+++/DAPI-) on chromosome 6 of the "Branco Mineiro Piauí" accession can be used as a marker to identify this genotype or may be associated with some character of economic interest.


Allium sativum L. é uma erva da família Alliaceae com sabor e aroma específicos e propriedades medicinais e nutracêuticas amplamente comercializada em diversos países. O Brasil é um dos maiores importadores de alho do mundo, apesar da sua produção ser restrita e limitada ao consumo interno. Assim, explorar a diversidade genética do alho comercial conservado em bancos de germoplasma é essencial para fornecer informações genéticas adicionais acerca dessa cultura economicamente importante. Uma ferramenta adequada para esse fim é a caracterização citogenética desses acessos. Este estudo teve como objetivo caracterizar a diversidade citogenética entre sete acessos de alho de um Banco de Germoplasma no Brasil. Os cariótipos foram obtidos por coloração convencional e com os fluorocromos de cromomicina A3 (CMA) e 4,6-diamidino-2-fenilindol (DAPI). Todos os acessos analisados apresentaram número cromossômico 2n = 16, fórmula cariotípica 6M + 2SM, cariótipos simétricos, núcleos reticulados em intérfase e cromossomos com condensação uniforme da cromatina da prófase para a metáfase. A coloração com fluorocromos mostrou diferenças na quantidade e distribuição de heterocromatina ao longo dos cromossomos e entre os acessos estudados. Com base no padrão de distribuição desses pequenos polimorfismos, foi possível separar os sete acessos em três grupos. Também foi possível diferenciar individualmente alguns dos acessos. Um dos resultados obtidos mostrou distensão heteromórfica da região organizadora nucleolar observada nos pares dos cromossomos 6 ou 7 com características peculiares. Foi sugerido, por exemplo, que o bloco heteromórfico de heterocromatina (CMA +++ / DAPI-) no cromossomo 6 do acesso “Branco Mineiro Piauí” pode ser usado como um marcador para identificar esse genótipo ou pode estar associado a algum caráter de interesse econômico.


Assuntos
Alho/citologia , Alho/genética , Heterocromatina
14.
PeerJ ; 10: e14602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570011

RESUMO

Soil salinity has been an increasing problem worldwide endangering crop production and human food security. It is an ideal strategy to excavate stress resistant genes and develop salt tolerant crops. NAC (no apical meristem/Arabidopsis transcription activation factor/cup-shaped cotyledon) transcription factors have been demonstrated to be involved in salt stress response. However, relevant studies have not been observed in garlic, an important vegetable consumed in the world. In this study, a total of 46 AsNAC genes encoding NAC proteins were identified in garlic plant by transcriptome data. Phylogenetic analysis showed that the examined AsNAC proteins were clustered into 14 subgroups. Motif discovery revealed that the conserved domain region was mainly composed of five conserved subdomains. Most of the genes selected could be induced by salt stress in different tissues, indicating a potential role in salt stress response. Further studies may focus on the molecular mechanisms of the AsNAC genes in salt stress response. The results of the current work provided valuable resources for researchers aimed at developing salt tolerant crops.


Assuntos
Arabidopsis , Alho , Humanos , Fatores de Transcrição/genética , Transcriptoma , Arabidopsis/genética , Alho/genética , Ativação Transcricional , Meristema/genética , Filogenia , Cotilédone/genética , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Estresse Salino/genética
15.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36430354

RESUMO

Commercial cultivars of garlic are sterile, and therefore efficient breeding of this crop is impossible. Recent restoration of garlic fertility has opened new options for seed production and hybridization. Transcriptome catalogs were employed as a basis for garlic genetic studies, and in 2020 the huge genome of garlic was fully sequenced. We provide conjoint genomic and transcriptome analysis of the regulatory network in flowering garlic genotypes. The genome analysis revealed phosphatidylethanolamine-binding proteins (PEBP) and LEAFY (LFY) genes that were not found at the transcriptome level. Functions of TFL-like genes were reduced and replaced by FT-like homologs, whereas homologs of MFT-like genes were not found. The discovery of three sequences of LFY-like genes in the garlic genome and confirmation of their alternative splicing suggest their role in garlic florogenesis. It is not yet clear whether AsLFY1 acts alone as the "pioneer transcription factor" or AsLFY2 also provides these functions. The presence of several orthologs of flowering genes that differ in their expression and co-expression network advocates ongoing evolution in the garlic genome and diversification of gene functions. We propose that the process of fertility deprivation in garlic cultivars is based on the loss of transcriptional functions of the specific genes.


Assuntos
Alho , Transcriptoma , Alho/genética , Alho/metabolismo , Regulação da Expressão Gênica de Plantas , Flores/genética , Flores/metabolismo , Melhoramento Vegetal , Genômica
16.
Food Res Int ; 161: 111823, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192892

RESUMO

Garlic stored at low temperature (0-13 ℃) for some times and subsequently crushed and placed at room temperature would turn green, while the one stored at high temperature (30 ℃) would not. In order to elucidate the regulatory mechanism of low temperature on garlic greening, transcriptome and proteome profiles of garlic stored at 4 ℃ and 30 ℃ were explored by RNA-seq and iTRAQ techniques. Principal component analysis showed that garlic at different storage temperatures were of significant differences on both gene and protein levels. 14,381 and 861 differential expression genes (DEGs) and proteins (DEPs) were identified respectively, in which 268 factors were shared according to their joint analysis, including 186 (144) up-regulated genes (proteins) and 82 (124) down-regulated genes (proteins) in comparing garlic stored at 4 ℃ with ones at 30 ℃. These 268 factors were mainly attributed to biological process (metabolic process) and molecular function (catalytic activity, binding) categories by Gene Ontology classification. The KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways enrichment of DEGs and DEPs revealed that GSSG production, GSH degradation, amino acid biosynthesis (cysteine and methionine) and energy metabolism (TCA and HMP cycles) were promoted by low-temperature storage to responding to oxidative stress and prepared for pigment synthesis in garlic. These results provide valuable information for the regulation of garlic greening during processing.


Assuntos
Alho , Transcriptoma , Cisteína , Alho/química , Alho/genética , Dissulfeto de Glutationa/genética , Metionina , Proteoma/metabolismo , Temperatura
17.
Genome Biol ; 23(1): 188, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-36071507

RESUMO

BACKGROUND: Garlic is an entirely sterile crop with important value as a vegetable, condiment, and medicine. However, the evolutionary history of garlic remains largely unknown. RESULTS: Here we report a comprehensive map of garlic genomic variation, consisting of amazingly 129.4 million variations. Evolutionary analysis indicates that the garlic population diverged at least 100,000 years ago, and the two groups cultivated in China were domesticated from two independent routes. Consequently, 15.0 and 17.5% of genes underwent an expression change in two cultivated groups, causing a reshaping of their transcriptomic architecture. Furthermore, we find independent domestication leads to few overlaps of deleterious substitutions in these two groups due to separate accumulation and selection-based removal. By analysis of selective sweeps, genome-wide trait associations and associated transcriptomic analysis, we uncover differential selections for the bulb traits in these two garlic groups during their domestication. CONCLUSIONS: This study provides valuable resources for garlic genomics-based breeding, and comprehensive insights into the evolutionary history of this clonal-propagated crop.


Assuntos
Alho , Alho/genética , Genoma de Planta , Genômica , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único
18.
Braz J Biol ; 84: e262697, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35976350

RESUMO

Garlic (Allium sativum) is an important cash food crop, and the biotechnology industry has considerable interest in the plant because of its medicinal importance. These medicinal properties are attributed to organosulphur compounds as the accumulation of these compounds varies according to genotype, locality, light quality, and cultivation practices. In this study, we compared a newly developed garlic variety NARC-G1 by National Agricultural Research Centre (NARC), Islamabad, Pakistan with three different garlic cultivars and highlighted the distinctive attributes like phenotypic characteristics, the content of allicin, elemental profile, and gene polymorphism. Phenotypic analysis showed NARC-G1 has significantly higher bulb weight (66.36g ± 18.58), single clove weight (5.87g ± 1.041), and clove width (17.41mm ± 0.95) which directly correlates to the size of the garlic. The analytical analysis showed the highest allicin content (4.82 ± 0.001) in NARC-G1. Genotyping of the alliinase in all four cultivars showed indels in the gene resulting in distinguishable changes in organosulphur compounds' profile. NARC-G1 is unique from other garlic cultivars and could be the best choice for mass production with proper cultivation and irrigation management. Moreover, for Pakistan NARC-G1 could be a potential contender to earn the industrial benefits with inland cultivation instead of importing garlic alleviating the economic burden.


Assuntos
Alho , Antioxidantes , Dissulfetos , Alho/química , Alho/genética , Humanos , Ácidos Sulfínicos/análise
19.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806016

RESUMO

Chinese chives is a popular herb vegetable and medicine in Asian countries. Southwest China is one of the centers of origin, and the mountainous areas in this region are rich in wild germplasm. In this study, we collected four samples of germplasm from different altitudes: a land race of cultivated Chinese chives (Allium tuberosum), wide-leaf chives and extra-wide-leaf chives (Allium hookeri), and ovoid-leaf chives (Allium funckiaefolium). Leaf metabolites were detected and compared between A. tuberosum and A. hookeri. A total of 158 differentially accumulated metabolites (DAM) were identified by Gas Chromatography-Mass Spectrometry (GC-MS) and Liquid Chromatography-Mass Spectrometry (LC-MS), among which there was a wide range of garlic odor compounds, free amino acids, and sugars. A. hookeri contains a higher content of fructose, garlic odor compounds, and amino acids than A. tuberosum, which is supported by the higher expression level of biosynthetic genes revealed by transcriptome analysis. A. hookeri accumulates the same garlic odor compound precursors that A. tuberosum does (mainly methiin and alliin). We isolated full-length gene sequences of phytochelatin synthase (PCS), γ-glutamyltranspeptidases (GGT), flavin-containing monooxygenase (FMO), and alliinase (ALN). These sequences showed closer relations in phylogenetic analysis between A. hookeri and A. tuberosum (with sequence identities ranging from 86% to 90%) than with Allium cepa or Allium sativum (which had a lower sequence identity ranging from 76% to 88%). Among these assayed genes, ALN, the critical gene controlling the conversion of odorless precursors into odor compounds, was undetected in leaves, bulbs, and roots of A. tuberosum, which could account for its weaker garlic smell. Moreover, we identified a distinct FMO1 gene in extra-wide-leaf A. hookeri that is due to a CDS-deletion and frameshift mutation. These results above reveal the molecular and metabolomic basis of impressive strong odor in wild Chinese chives.


Assuntos
Allium , Cebolinha-Francesa , Alho , Allium/química , Allium/genética , Cebolinha-Francesa/genética , Alho/genética , Alho/metabolismo , Espectrometria de Massas/métodos , Odorantes , Filogenia
20.
J Sci Food Agric ; 102(7): 2864-2873, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34741310

RESUMO

BACKGROUND: Garlic (Allium sativum L.), whose bioactive components are mainly organosulfur compounds (OSCs), is a herbaceous perennial widely consumed as a green vegetable and a condiment. Yet, the metabolic enzymes involved in the biosynthesis of OSCs are not identified in garlic. RESULTS: Here, a full-length transcriptome of purple garlic was generated via PacBio and Illumina sequencing, to characterize the garlic transcriptome and identify key proteins mediating the biosynthesis of OSCs. Overall, 22.56 Gb of clean data were generated, resulting in 454 698 circular consensus sequence (CCS) reads, of which 83.4% (379 206) were identified as being full-length non-chimeric reads - their further transcript clustering facilitated identification of 36 571 high-quality consensus reads. Once corrected, their genome-wide mapping revealed that 6140 reads were novel isoforms of known genes, and 2186 reads were novel isoforms from novel genes. We detected 1677 alternative splicing events, finding 2902 genes possessing either two or more poly(A) sites. Given the importance of serine O-acetyltransferase (SERAT) in cysteine biosynthesis, we investigated the five SERAT homologs in garlic. Phylogenetic analysis revealed a three-tier classification of SERAT proteins, each featuring a serine acetyltransferase domain (N-terminal) and one or two hexapeptide transferase motifs. Template-based modeling showed that garlic SERATs shared a common homo-trimeric structure with homologs from bacteria and other plants. The residues responsible for substrate recognition and catalysis were highly conserved, implying a similar reaction mechanism. In profiling the five SERAT genes' transcript levels, their expression pattern varied significantly among different tissues. CONCLUSION: This study's findings deepen our knowledge of SERAT proteins, and provide timely genetic resources that could advance future exploration into garlic's genetic improvement and breeding. © 2021 Society of Chemical Industry.


Assuntos
Alho , Transcriptoma , Cisteína/metabolismo , Alho/genética , Alho/metabolismo , Filogenia , Melhoramento Vegetal , Isoformas de Proteínas/genética , Serina O-Acetiltransferase/genética , Serina O-Acetiltransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...